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SUMMARY

A reference solutions for phase change involving convection in the melt is currently missing. In the
present study, we focus on the problem of melting of pure tin in a square cavity heated from the
side, which is used as a benchmark test problem. The mathematical model used for the simulations is
based on the enthalpy formulation. Extensive numerical computations are performed with grids as �ne
as 800 × 800. The convergence of the numerical solution is demonstrated and its level assessed. Data
values and plots are provided for use as a reference solution. Copyright ? 2005 John Wiley & Sons,
Ltd.

KEY WORDS: benchmark; phase change; pure metal melting; natural convection; enthalpy method;
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1. INTRODUCTION

The problem of gallium melting in a rectangular cavity heated from the side [1] is fre-
quently used as a comparison exercise in the phase change community. In particular, both the
experimental results of Gau and Viskanta [1] and the numerical results of Brent et al. [2]
are often considered for that purpose. Examples of works referring to these results include
References [3–10] where the emphasis is on developing a new numerical method, Refer-
ences [7, 11, 12] for veri�cation purposes, and References [7, 13–15] with interest in the pre-
vailing roll structure in the melt. For a long time the solution of Brent et al. was used for
comparisons due to its rather good agreement with experimental observation and the lack
of a reference solution for the problem. Recently, Hannoun et al. [16] have demonstrated
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what several researchers have argued before [7, 13, 15], that the so-often mentioned solution
of Brent et al. [2] is actually an incorrect numerical solution due to its inappropriate level of
grid convergence.
A problem very similar to gallium melting is the comparison exercise suggested by Gobin

and Lequere [17], which involves melting of tin in a square cavity. Contributors to the exercise
contrasted their results in References [14, 17] and wide discrepancies were reported. The issue
of correct number of cells in the melt was raised for tin melting, as it was for gallium. In
Reference [16], the issue was resolved. More recently, Mencinger [18] presented additional
results for tin melting showing large discrepancies among various contributors.
Earlier contributors to the problems of tin melting did not assess the accuracy of their

numerical solution. In fact, a reference solution for convection phase change seems to be
missing in the literature [10, 14–16, 18]. By reference solution, we mean a set of plots and data
values (numbers) with known accuracy that one can refer to for comparison purposes. Such a
reference solution is needed in view of the unavailability of analytical solutions for convective
heat transfer, the mathematical models being too complex. For phase change problems without
convection, analytical solutions are available [19, 20].
In the present study, we propose a reference solution for convection phase change problems

with accuracy ranging from 0.1 to 1%, depending on the parameter and time considered. This
reference solution could be used as a starting problem for verifying a newly developed code.
The present work is organized in two parts. In the �rst part, we conduct a grid re�nement

study that demonstrates the convergence level of the numerical solution, while in the second
part, we propose a reference solution consisting of a set of plots and data tables. In addition,
we clarify some key numerical issues for assessing the accuracy of the tin melting problem.

2. PHYSICAL PROBLEM

The problem considered in the present study was suggested by Lequere et al. [17] as a
comparison exercise. The con�guration is shown in Figure 1. A square cavity is initially
�lled with pure solid tin at its melting temperature Tf . The right wall is maintained at the
same temperature Tc =Tf (no undercooling). At time t=0, the temperature of the left wall is
suddenly raised to a temperature Th¿Tf and melting of the solid ensues. Convection in the
melt results in several recirculation cells that give the solid–liquid interface a wavy shape.
In the present work, we focus on one particular set of values for the dimensionless numbers
Ra (Rayleigh), St (Stefan), and Pr (Prandtl). These values as well as other con�guration
parameters and tin physical properties are shown in Table I.

3. MATHEMATICAL MODEL

For the problem considered, we employ a one-domain enthalpy formulation, which captures
fronts without having to track them explicitly. The governing equations are cast in conservative
form with Cartesian coordinates and primitive variables (velocity–pressure formulation). The
energy equation involves enthalpy, an appropriate choice when phase change is involved.
The �ow is assumed two-dimensional, unsteady, laminar, and incompressible. The �uid is
Newtonian and obeys Fourier’s law of heat conduction. The material in the cavity is single
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Figure 1. Tin melting problem con�guration.

Table I. Tin parameters for the melting problem.

Parameter Symbol Tin Units

Reference density �ref 7:5× 103 kg=m3

Speci�c heat cp 200.0 J=kg K
Dynamic viscosity � 6× 10−3 N s=m2

Thermal conductivity � 60.0 W=m K
Coe�cient of volume expansion � 2:67× 10−4 K−1

Latent heat of fusion L 6× 104 J=kg
Fusion temperature Tf 505.0 K
Hot wall temperature Th 508.0 K
Cold wall temperature Tc 505.0 K
Cavity height H 0.1 m
Cavity width W 0.1 m
Gravity acceleration g 10.0 m=s2

Rayleigh number Ra 2:5× 105

Stefan number St 0.01
Prandtl number Pr 0.02
Cavity aspect ratio (H=W ) Ar 1.0

component. Buoyancy e�ects due to temperature variations are taken into account by invoking
Boussinesq’s assumption. The thermophysical properties are assumed constant and equal for
both solid and liquid phases. The resulting mathematical model, Equations (1), is described
by Brent et al. [2].

@�
@t
+∇ · (�V) = 0 (1a)
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@�u
@t

+∇ · (�Vu) =∇ · (�∇u)− @P
@x

− Au (1b)

@�v
@t
+∇ · (�Vv) =∇ · (�∇v)− @P

@y
− Av+ �ref g�(h − href )=cp (1c)

@�h
@t

+∇ · (�Vh) =∇ ·
(

�
cp

∇h
)

− @��H
@t

− ∇ · (�V�H) (1d)

Equations (1) are in dimensional form. The source terms in Equations (1b)–(1c) are based
on the Carman–Kozeny relation, A= −C(1−fL)2=(f3L+q), where C and q are two constants
whose values depend on the problem considered. In the mushy zone, TS6T6TL, a linear
relationship is assumed between liquid fraction and temperature. The mathematical model
is complemented with appropriate initial and boundary conditions. On the boundary, both
velocity components are set to zero. The top and bottom boundaries are assumed thermally
insulated, while the temperature is speci�ed on the lateral walls. Initially, the material is at
rest and at uniform temperature T =Tf .

4. NUMERICAL METHOD AND PARAMETERS

The conservation laws, Equations (1) are discretized with a �nite-volume method on a uni-
form Cartesian grid. Space approximations are second order accurate. The convective terms
are discretized with the centred scheme. A fully implicit Euler method is employed for time
discretization. The resulting nonlinear and coupled system of equations is handled with the
SIMPLER algorithm [21]. The sensible, h, and latent, �H , heat coupling in the energy Equa-
tion (1d) is handled with the procedure described by Brent et al. [2]. We use two linear
system solvers: BICGSTAB-SIP and CG-SSIP.
To save computational time, all transport equations are solved in a reduced domain con-

taining the liquid. This practice is possible for the energy equation because the solid remains
isothermal at temperature Tf . In addition, a grid coarsening procedure based on bilinear inter-
polation is used to transfer data from �ne to coarse grids at speci�ed times. The numerical
melting range is set as follows: TS =Tf and TL =Tf + �. Note that with this choice of melting
range, necessary in view of the lack of undercooling in the benchmark problem and the require-
ment of the numerical scheme to have a nonzero Tf −Tc = �=2 interval, Tf = 505:0125. Hence,
it would be more correct to state that our reference solution is actually for Tf = 505 + �=2
with undercooling of �=2 at the right boundary. However, as � → 0, both problems should
have the same solution.
The simulations are carried out with the following numerical parameter values: �=0:025,

�t=0:1–0.05 s (decreases as melting proceeds), C=1015, q=10−6, !�H =0:2, !u=!v=0:7,
!P=0:9, and !h = 0:8. Inner iterations (for linear systems) are stopped when a reduction of
seven orders of magnitude is achieved for the residual. Outer iterations (during a time step)
are stopped when the residual of the conservation equation is less than �o, where �o is set to
8 × 10−2, 10−1, and 10−5 for momentum, energy, and mass, respectively. This choice was
made after careful inspection of residuals during preliminary simulations.
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The code used for the present study has been veri�ed on a series of test problems: the lid
driven cavity �ow [22], the problem of natural convection in a di�erentially heated cavity [23],
and the problem of melting in a corner [20], all with satisfactory results.

5. RESULTS

5.1. The �ow dynamics in the melt

A phenomenological description of the �uid �ow in the melt will help to better understand
the choice of parameters and plots selected in the present study. The physical problem starts
with fully solid tin at its melting temperature in the cavity. Heating of the left boundary to a
temperature above the melting point instigates melting. A thin layer of liquid tin forms and
convection ensues, due to buoyancy. As melting proceeds, the width of the melt layer increases
and the single convection cell keeps growing (Figure 2). Near time t=120 s, a bifurcation
occurs, wherein the �ow structure suddenly changes to four rolls. Afterwards, both the melt
layer and the rolls keep increasing in size. The interface assumes a wave-like shape where
the troughs correspond to the roll locations. At some point during the melting process, the
rolls get too big to share the cavity. The top two rolls usually merge, thereby decreasing the
total number of rolls by one. There are three major roll pairings during the melting process:
the �rst merging occurs around time t=210 s, the second merging close to 480 s, and the
third near 1050 s. The third roll merging is not considered in the present work.

5.2. Organization of the results

Selected times for data output are based on the physics of the problem. Five basic times have
been selected: (1) t=60 s when the thin melting layer exhibits a single roll, (2) t=100 s
when the �ow in the melt starts restructuring into a four-roll pattern, (3) t=200 s for the
four-roll pattern, (4) t=450 s for the three-roll pattern, and (5) t=700 s for the two-roll
pattern. At each selected time, the prevailing structure (number of rolls) is well established
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Figure 2. Roll pattern in the melt at several times.
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and about to change. The presentation of the results is organized as follows: in the �rst part, a
convergence analysis demonstrates the accuracy of the numerical solution, and in the second
part, data values and plots are presented as a reference solution. All the results are given in
S.I. units if not otherwise speci�ed.

5.3. A grid convergence study

Several parameters are selected to assess the convergence level of the numerical solution.
Pro�les of streamfunction and temperature as well as roll-centre locations and �eld values are
used as indicators for �uid �ow and heat transfer in the melt. Roll-merging and bifurcation
times keep track of the time evolution of the �ow in the melt. Total liquid fraction in the cavity
as well as location of interface crests and troughs are used to monitor both melting process
and solid–liquid interface evolution. Last, the Nusselt number at the hot wall is selected for
heat transfer rate assessment.
The re�nement study carried out in this work is done on a uniform Cartesian grid with sizes

ranging from 25×25 to 800×800 nodes. The grid spans the entire cavity in contrast to many
other studies where the grid spans the liquid region only. Few nodes are in the liquid early
in the melting process, when the liquid layer next to the hot wall is thin. At time t=100 s,
for example, the resolution in the melt would be 70× 800 for a 800× 800 grid. As a result,
a �ne grid is needed to resolve the thin melt layer at early times. The grid may be coarsened
later, when the layer thickness is larger. This is evidenced in Figure 3, which compares the
numerical solution at time t=450 s from three di�erent simulations. The �rst two solutions
are from a 400 × 400 and a 600 × 600 grids, respectively, while the third solution (called
‘600 extrapolated’) is from a mixed grid: 600× 600 during time t=0–300 s and 400× 400
afterwards. As shown in the �gure, coarsening the grid at time 300 s does not a�ect the
accuracy of the solution at time 450 s. In fact, the initial roll location is a determining factor
for the accuracy of the roll locations at later times since the rolls keep growing at their
initial location. This grid-coarsening procedure reduces considerably the computational resource
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Figure 3. Checking the e�ect of the restriction procedure at t=450 s.
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requirements needed for an entire simulation. Our most accurate solution at time t=700 s
will be from a simulation with a 600 × 600 grid from t=0–300 s, a 500 × 500 grid from
t=300–400 s, and a 400× 400 grid afterwards.

5.3.1. Pro�les. Transverse pro�les of streamfunction and temperature through the centre of
the bottom roll (Figure 2) are shown in Figures 4 and 5 at four times. It appears that at
time t=60 s, visual convergence is achieved with a 400 × 400 grid while at time t=200 s,
600×600 nodes are required for the same purpose. As may be noticed on the plots, the main
accuracy issue is one related to the vertical location of the rolls.
There is a slight discrepancy (vertical shift) between the �nest two grid solutions at time

t=450 s. There is no 800× 800 grid result available to assess the accuracy of the 600× 600
grid solution. However, as indicated by the t=200 s plot, the 600× 600 grid is �ne enough
to capture the correct early roll locations. In view of the fact that the grid does not need
re�nement (actually may be coarsened) after time 200 s (see the discussion in Section 5.3),
we believe the 600 × 600 grid solution to have the same accuracy at times 450 and 200 s.
At time t=700 s, the most accurate solution ‘600 extrapolated’ (see Section 5.3) di�ers only
slightly from the 400× 400 solution.

5.3.2. Roll-centre parameters. The transient for the tin melting problem is very sensitive to
the roll locations in the melt. In particular, the roll-merging times, the shape of the solid–liquid
interface, and the Nusselt number Nu are strongly a�ected by the initial roll locations. Hence, it
is very important to capture the rolls accurately. Figure 6 displays the e�ect of grid re�nement
on the roll-centre location yc and streamfunction value  c at time t=200 s (see Figure 2 for
roll numbering and associated nomenclature). As may be noticed, there is a good convergence
pattern. Similar results, not shown here, are obtained for times 450 and 700 s.
A quantitative estimate of the convergence level is provided in Table II, which displays the

values obtained for the �nest two grids as well as an extrapolated value based on Richardson’s
extrapolation. The relative error for the �nest grid solution is then computed assuming the
extrapolated value is the exact value. The errors so calculated are seen to lie between 0.1%
and 0.96% with the largest error corresponding to the location of Roll#2 at times t=200 and
450 s. Elsewhere, the error does not exceed 0.5%.

5.3.3. Interface location and total liquid fraction. With the enthalpy method, the solid–liquid
interface is usually de�ned as the fL =0:5 contour line. Here we adopt a slightly di�erent
de�nition: for a given y value, the solid–liquid interface location, xint, is de�ned as the width
of the equivalent liquid content of the corresponding row of �uid, i.e. if all the liquid at
height y is pilled up to the left, the liquid would have width equal to xint. The interface so
obtained is almost indistinguishable from the fL =0:5 contour curve.
Figure 7 displays the solid–liquid interface obtained with several grids. For clarity, only the

grids essential for demonstrating the convergence of the solution are shown. The interfaces
obtained with the 400 × 400 and the 300 × 300 grids are almost indistinguishable. Clearly,
interface location converges faster than other variables such as  . At time 100 s, the interface
is �at since only one cell is present in the liquid.
Convergence of the interface location is slower at the troughs and crests along the interface.

Figure 8 shows the e�ect of grid re�nement for the troughs, the crests, and the top and bottom
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Figure 4. Grid convergence of streamfunction transversal pro�les at four times: (a) t=60 s,
x=0:003417; (b) t=200 s, x=0:0063; (c) t=450 s, x=0:01006; and (d) t=700 s, x=0:01346.
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(b) t=200 s, x=0:0063; (c) t=450 s, x=0:01006; and (d) t=700 s, x=0:01346.
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Table II. Extrapolated values of the roll-centre location (y-coordinate) and
the corresponding streamfunction value.

Time 200 s Time 450 s

Mesh Mesh Err. Mesh Mesh Err.
Roll 1=600 1=800 Extrap. (%) 1=400 1=600 Extrap. (%)

#1 0.02058 0.02063 0.02069 0.31 0.02787 0.02792 0.02796 0.14
#2 0.04592 0.04627 0.04672 0.96 0.06137 0.06192 0.06236 0.70

yc #3 0.06880 0.06900 0.06926 0.37 0.08787 0.08825 0.08855 0.34
#4 0.08775 0.08783 0.08793 0.11

#1 0.48192 0.48268 0.48366 0.20 1.174 1.180 1.185 0.40
− c #2 0.46594 0.46670 0.46767 0.20 1.128 1.130 1.132 0.14
×104 #3 0.46182 0.46287 0.46422 0.29 1.018 1.0184 1.01872 0.31

#4 0.45364 0.45469 0.45604 0.30

points of the interface at time t=450 s. The y-locations of the crests and troughs are from
the �nest grid solution.
The actual error on the calculated interface location, max |(xe−xint)=xe|, where xe is a value

obtained from Richardson’s extrapolation, is shown at three times in Table III. However, xe
being small exaggerates the value of the relative error. Normalizing by the cavity width W ,
the error does not exceed 0.3%. Notice that the error is largest at time t=700 s. This is to
be expected since the error estimate is from the 300× 300 and 400× 400 grids, Richardson’s
extrapolation precluding the use of a hybrid grid such as the one used for the �nest available
solution, the 600-extrapolated solution. Therefore, the calculated error might very well over-
estimate the actual error. Indeed, if the error is computed as the di�erence between the �nest
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Table III. Error on the calculated solid–liquid interface location.

Time t(s)

Richardson’s 700

Richardson’s |x600ext − x400|
200 450 300× 300 and 400× 400 grids Finest grids

Error (%) 0.18 0.62 1.07 0.4
Error=W 0.02 0.13 0.30 0.1
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Figure 9. Grid convergence of total liquid fraction in the cavity at several times.

two grid solutions (600-extrapolated and 400 × 400 grid solutions), the relative error drops
to 0.4% and the error normalized by the width W to 0.1% as shown in the last column of
Table III.
The liquid fraction, ratio of melted tin and cavity volumes, is often used for comparison

purposes in the literature. Figure 9 displays the convergence of the total liquid fraction with
grid re�nement at four times. Each curve has its own y-axis to allow for the representation
on a single graph.
Richardsons’s extrapolation procedure is used to obtain a better approximation of the total

liquid fraction value, which in turn is used to calculate the error of the approximation on
each grid. A log–log plot of the relative error as a function of the normalized mesh spacing
is shown in Figure 10. The slope of the curves obtained is close to two, the order of space
discretization. The error on the liquid fraction is less than 0.05% for all four times.

5.3.4. Roll-merging and bifurcation times. The melting process for the problem under study
involves several major transition times: the time for onset of four-roll pattern as well as three
roll-merging times (see Section 5.1). Assigning a value to these critical times is not trivial
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Figure 11. De�nition of the critical times tc for roll mergings and bifurcations with the umax versus
time plot: (a) onset of four rolls; (b) 1st roll merging; and (c) 2nd roll merging.

because the roll mergings as well as the onset of four-roll pattern are continuous processes.
Inspection of the time evolution of several �ow quantities reveals that some parameters are
very sensitive to the transitions. For example, the onset of four-roll pattern results in a sudden
slope change of the umax versus time plot (Figure 11(a)), which exhibits a knee at that
particular time. The parameter umax stands for the maximum value of the u velocity component
over the entire �ow �eld. For the roll mergings, other parameters may be used, e.g.  min, the
minimum  �eld value, and uvar, the integral over the computational domain of the absolute
value of u change in one time step. However, umax also reveals them well: a peak appears
on the graph near the transition time (Figure 11(b) and 11(c)) and the highest point on the
peak is selected for evaluating the merging time tc.
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Figure 12. E�ect of grid re�nement on the transition time approximations:
(a) transition time; and (b) relative error.

Figure 12 displays the e�ect of grid re�nement on three transition times: onset of four-roll
pattern, �rst roll-merging, and second roll-merging times. Clearly, convergence is monotone as
shown in Figure 12(a). Richardson’s extrapolation is used to obtain better approximations and
the corresponding relative errors are plotted in Figure 12(b) versus mesh spacing, normalized
by the width (also height) of the cavity. Second order convergence is observed for all plots
(slope is close to 2). The maximum estimated error is close to 0.3% for the onset of four-roll
pattern and less than 0.8% for the two roll mergings.

5.3.5. Nusselt number plots. The average Nusselt number Nu at the hot wall measures the
heat transfer rate through the cavity. Nu is de�ned as the ratio of the actual heat �ux
through the wall and the heat �ux that would prevail without convection (pure conduction).
Figure 13 displays Nu versus time for grid sizes up to 600 × 600. To make the graph more
readable, consecutive curves are shifted 2 units vertically from one another. There is very good
agreement between the �nest two grid (400×400 and 600×600) solutions. Only a minor shift
of the drop may be noticed. This sudden drop, near time t=480 s, corresponds to the second
roll merging. Notice the very good agreement between the 600×600 and the 600-extrapolated
merging times, con�rming the appropriateness of the grid coarsening procedure.

5.4. Time step considerations

The results presented in the previous sections focused primarily on the e�ect of grid re�ne-
ment. Since the problem being studied is unsteady, it is necessary to assess the adequacy
of the time step choice. Several time step values have been tested after a basic value was
calculated from the classical CFL condition. When further re�nement did not lead to signif-
icant changes (usually up to the fourth digit), the time step was considered small enough.
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In particular, a time step ten times smaller than the one employed in the present calculations
has been used to check the accuracy of the solution at high transients (roll mergings).

5.5. A reference solution

Having demonstrated the convergence of the numerical solution under grid re�nement, we
present selected values and plots for use as a reference solution. The values are from the
most accurate grid, except for the transition times, which are obtained through Richardson’s
extrapolation. Hence, the 800 × 800 grid solution is used for times 0–225 s, the 600 × 600
solution for times 225–500 s, and the 500× 500 grid solution, restricted from the 600× 600
solution at time 500 s, is used afterwards. All variables are dimensional, and in S.I. units if
unspeci�ed.
We provide data tables for transverse pro�les (Table IV), interface location (Table V), time

evolution of Nusselt number, total liquid fraction and �ow �eld extreme values (Table VI),
transition times (Table VII), and roll-centre parameters (Tables VIII–X). Plots are provided
for the time evolution of  min and umax values (Figure 14), the Nusselt number and total liquid
fraction (Figure 15), and �ow parameters at two carefully selected monitoring points shown
in Figures 16 and 17.
The max error is estimated to be 0.96% for the roll-centre locations, 0.4% for the roll-

centre �eld values, 0.6% for the interface, 0.1% for the total liquid fraction, and 0.8% for the
roll-merging and bifurcation times.
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Table IV. Transverse pro�les of streamfunction  and temperature T at three times.

Time 200 s Time 450 s Time 700 s
x=0:0063 x=0:01006 x=0:01346

y (m)  × 105 T (K)  × 104 T (K)  × 104 T (K)

0.000 0.00000 506.289 0.00000 506.041 0.00000 505.866
0.005 −1:13147 506.335 −0:14870 506.100 −0:10255 505.916
0.010 −1:01166 506.346 −0:13151 506.199 −0:10869 506.015
0.015 −2:50584 506.239 −0:03275 506.026 −0:00094 505.937
0.020 −4:78860 506.463 −0:44922 506.843 −0:14267 505.691
0.025 −3:22922 506.752 −1:05104 506.156 −0:96751 505.741
0.030 −0:84784 506.648 −1:13372 506.676 −1:69568 506.099
0.035 −0:77794 506.453 −0:61249 507.021 −1:89963 506.504
0.040 −1:90118 506.267 −0:06117 506.823 −1:52562 506.89
0.045 −4:51424 506.484 −0:04083 506.441 −0:68837 507.103
0.050 −3:43867 506.726 −0:05067 506.082 −0:04424 506.851
0.055 −0:83490 506.638 −0:56915 505.918 −0:06975 506.486
0.060 −0:78910 506.378 −1:08227 506.276 −0:02925 506.255
0.065 −3:26631 506.286 −0:99995 506.770 −0:07892 505.929
0.070 −4:53440 506.573 −0:39213 506.947 −0:78321 505.841
0.075 −2:03444 506.695 −0:01980 506.524 −1:53069 506.145
0.080 −1:20603 506.413 −0:31777 506.101 −1:81390 506.548
0.085 −3:82606 506.378 −0:88847 506.306 −1:55184 506.942
0.090 −4:08494 506.720 −0:97383 506.828 −0:80850 507.246
0.095 −1:09192 506.854 −0:47331 507.221 −0:08628 507.278
0.100 0.00000 506.792 0.00000 507.275 0.00000 507.201

6. DISCUSSION

6.1. On the mathematical model

There are two main approaches to macroscopic modelling of phase change problems, front-
tracking and front-capturing [19]. In the older, classical, front-tracking approach, the conser-
vation laws are imposed in each phase separately and explicit interface conditions must be
imposed to ensure conservation across phases, which provide the additional equations neces-
sary to determine the unknown moving boundary, as in the classical Stefan problem. This, of
course, assumes a priori that the interface is a smooth mathematical surface, and cannot be
applied to complicated problems.
The alternative, front-capturing, one-domain approach, makes no a priori assumptions about

structure and smoothness of fronts, by posing the conservation laws globally, irrespective
of phase. Interface conditions are obeyed automatically as ‘natural boundary conditions’ (in
the sense of calculus of variations), are not explicitly stated or enforced. The thickness of
the phase transition (mushy) region results from the solution and not dictated a priori; its
location can be recovered from the solution a posteriori. This, enthalpy formulation (similar
to shock capturing in gas dynamics), is the most viable general approach, valid for simple
and complicated problems alike.
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Table V. Interface location xint(m) as a function of height y at four times.

Time (s)

y (m) 100 200 450 700

0.000 0.008749 0.01215 0.01776 0.02180
0.005 0.008796 0.01225 0.01793 0.02199
0.010 0.008868 0.01231 0.01802 0.02211
0.015 0.008915 0.01227 0.01774 0.02186
0.020 0.008932 0.01264 0.01822 0.02215
0.025 0.008929 0.01297 0.01986 0.02450
0.030 0.008927 0.01283 0.02079 0.02657
0.035 0.008929 0.01254 0.02065 0.02761
0.040 0.008929 0.01235 0.01973 0.02762
0.045 0.008929 0.01268 0.01882 0.02667
0.050 0.008929 0.01294 0.01838 0.02510
0.055 0.008929 0.01274 0.01901 0.02408
0.060 0.008929 0.01243 0.02015 0.02396
0.065 0.008928 0.01253 0.02060 0.02435
0.070 0.008929 0.01289 0.02017 0.02540
0.075 0.008932 0.01282 0.01917 0.02663
0.080 0.008926 0.01247 0.01856 0.02752
0.085 0.008927 0.01260 0.01999 0.02794
0.090 0.008982 0.01311 0.02149 0.02804
0.095 0.009087 0.01328 0.02204 0.02809
0.100 0.009142 0.01327 0.02201 0.02812

Table VI. Nusselt number, liquid fraction, and maximum and minimum �eld values for
velocity components and streamfunction.

Time (s)

100 200 300 400 450 500 600 700

Liq. fraction 0.08930 0.12670 0.1563 0.1829 0.1956 0.2077 0.2309 0.2536
Nu 11.25220 8.15200 6.9560 6.4660 6.3000 5.8930 5.7040 5.7120
 max × 106 0.00351 0.00476 0.1472 0.5739 0.8907 1.2809 1.4500 1.9550
 min × 104 −0:19710 −0:48827 −0:7650 −1:0420 −1:1810 1.3530 −1:6290 −1:9060
umax (m/s) 0.00240 0.00685 0.0104 0.0132 0.0143 0.0156 0.0172 0.0186
umin (m/s) −0:00237 −0:00645 −0:0101 −0:0129 −0:0141 −0:0154 −0:0171 −0:0187
vmax (m/s) 0.00699 0.01205 0.0149 0.0170 0.0179 0.0193 0.0207 0.0222
vmin (m/s) −0:00708 −0:01179 −0:0143 −0:0163 −0:0171 −0:0192 −0:0198 −0:0211

It is based on the weak formulation (see Reference [19]) of conservation laws, which
constitutes a well-posed mathematical problem (admits unique, stable solution), and it has
been established mathematically that it reduces to the sharp interface limit whenever the latter
exists. In that case, the numerical solution also converges to the sharp interface solution as
�x;�t → 0. Newer developments in this spirit include phase-�eld formulations, and level set
methods for evolving fronts.
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Table VII. Bifurcation and roll-merging times.

Time (s)

Onset of four-roll pattern 122.6
First roll merging (4 to 3 rolls) 213.0
Second roll merging (3 to 2 rolls) 490.2

Table VIII. Parameters of the four rolls at time 200 s.

Roll 1 2 3 4

xc (m) 0.00631 0.006322 0.0066311 0.006443
yc (m) 0.02063 0.04627 0.06900 0.08783
 c × 105 −4:82682 −4:66698 −4:62875 −4:54689
Tc (K) 506.507 506.508 506.505 506.531

Table IX. Parameters of the three rolls at time 450 s.

Roll 1 2 3

xc (m) 0.009917 0.009917 0.01025
yc (m) 0.02792 0.06192 0.08825
 c × 104 −1:18 −1:12989 −1:01841
Tc (K) 506.47 506.484 506.628

Table X. Parameters of the two rolls at time 700 s.

Roll 1 2

xc (m) 0.0134582 0.0136101
yc (m) 0.0342582 0.0801195
 c × 104 −1:90609 −1:81429
Tc (K) 506.44 506.557

The enthalpy method for phase change problems is very popular due to its inherent con-
ceptual advantages, its simplicity, e�ciency, generality, and robustness. It has been shown
to produce results in good agreement with other numerical techniques, such as front-tracking
with adaptive mesh [24].
Although newer methods, such as the immersed boundary method [25], the sharp interface

method [26], and the phase �eld method [27] have been suggested as improvements over
the enthalpy method, they were designed for �ner (mesoscopic) scale phenomena, such as
problems involving surface tension and dendritic solidi�cation, mostly without �ow, and results
are still mostly qualitative. Both the immersed boundary and phase �eld methods are in fact
enthalpy-type, with the interface spread over at least one control volume.
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Figure 15. Time evolution of the total liquid fraction in the cavity as well as the
average Nusselt number at the hot wall.

For a macroscopic description of melting, it is arguable whether an idealized sharp inter-
face (as in the Stefan problem) is physically more correct than a mushy zone allowed by
the enthalpy formulation. After all, a physical interface is not really a mathematically sharp
surface. Ultimately, this is an issue of model validation against experimental data, which is
exceedingly hard to carry out (see Reference [16]), and as far as we know, it is still open
for the gallium and tin melting problems.
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6.2. On the numerical method

The present work aims at providing a much needed reference solution for phase change with
convection, employing the most commonly used formulation and standard, well-understood
numerical methods. Our control volume centred discretization, being of order 2 in space and
1 in time, is probably not the most e�cient numerical technique today. However, this dis-
cretization is robust and reliable. It does not involve additional error sources due to extraneous
procedures such as interpolation=extrapolation needed after mesh adaptation or �ux correction
needed to ensure monotonicity of higher order schemes.
Given that the mathematical model is well-posed, any convergent (consistent and stable)

numerical method will produce an approximation that ultimately converges to the unique
solution of the model. Lower order methods are certainly slower to converge (require �ner
mesh). In the present study, the numerical method was pushed to its limits and we managed
to reach time t=700 s. Beyond that, adaptive mesh re�nement, higher order schemes, and
parallelization may be necessary to reach an acceptable convergence level.

6.3. A crucial issue

The grid re�nement study carried out in this work shows, among other things, that a crucial
issue in the simulation of the tin melting problem is whether or not the roll locations, early
in the melting process (around t=200 s), are predicted accurately. The actual cell structure
in the melt has been reported in many publications (reviewed and discussed in Reference
[16]) but the accuracy of the roll locations as well as the values of streamfunction and
temperature at the roll centres had not been addressed. A small error in the actual roll location
changes dramatically the times for roll mergings. This can be observed in Mencinger’s results
(Reference [18], Figure 12(d), p. 260) which shows how the drop in the Nu(t) plot shifts
to the right when the grid is re�ned. In fact, our results indicate a time for the third roll
merging close to 1050 s, in contrast to 1000 s (�Fo=4) suggested in Mencinger’s results (a
5% discrepancy). This result is actually consistent with our observations, that a decrease in
resolution (either grid size or discretization scheme order) usually results in an earlier roll
pairing. When the resolution is lower, the top two rolls are closer (incorrect location), and
they merge faster.

6.4. Enough nodes or not enough

Recently, Mencinger [18] presented additional results on the tin melting problem. In his work,
he indicates that with his method, in contrast to other numerical results [15, 16], even a coarse
grid ‘40×40’ captures well the physical behaviour of the system such as the �ow instabilities
(roll merging). However, his results (Figure 12(d), p. 260) show a 25% error for the second
roll-merging time obtained with the 40 × 40 grid. This is a strong indication that the roll
structure is not accurately resolved early in the melting process. If his intended meaning is
that several rolls may be captured with a 40× 40 grid, then several rolls were also obtained
with a 50 × 50 grid in Reference [16] with the second order centred scheme. But that does
not mean such coarse solutions are correct (converged). His conclusion, that the origin of
the discrepancies of contributed solutions in comparison exercise #1 [14, 17] could simply be
insu�cient grid density for the speci�ed cases, was already suggested in many earlier works
[7, 13, 15] and clearly demonstrated for the case of tin melting in Reference [16].
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6.5. The oscillatory nature of the solution

An interesting feature shown in Figure 13 is the presence of oscillations on the Nu plot for
the coarse grids after time t=500 s (i.e. the second roll-merging). Oscillations of the Nu plot
were reported in three publications [10, 14, 18]. Wintru� et al. [10] add that these oscillations
are generated by pulsations of the rolls in the melt. Mencinger [18], who acknowledges the
possibility of purely numerical oscillations, suggests that the observed oscillations are actually
physical. He adds that the time step �t should be small enough (60:01s) in order to capture
the physical oscillations. Our results indicate that oscillations may show up even for a larger
time step �t=0:1 s (Figure 13, grids 50 × 50 and 100 × 100). Reducing the time step by
a factor 10 does not a�ect the solution. Moreover, the oscillations seem to fade away as
the grid is re�ned from 50 × 50 to 400 × 400 (Figure 13), which seems to indicate that the
oscillations are of numerical origin. Inspection of the Nusselt number plots at a later time,
Figure 18, con�rms that trend. A possible explanation for theses oscillations is the fact that
the cell Peclet number for the simulations is too large. In our simulations, Pe ¿ 2 when
t ¿ 500 s even with the �nest grid. This is one of the reasons we do not present results
beyond time t=700 s. The coarse grid used by Mencinger may well correspond to a cell
Peclet number of the order of Pe=30. Further work may be needed in order to resolve this
issue.
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Table XI. CPU requirements for several simulations.

Grid Time (s) CPU (h) Machine

100× 100 0–700 20 SUN Enterprise 6000
200× 200 0–700 260 CRAY SV1
400× 400 0–700 450 Compaq Alpha ES40
600-extrap. 0–700 1070 Compaq Alpha ES40
600× 600 0–500 2500 Compaq Alpha ES40
800× 800 0–225 1750 Compaq Alpha ES40

6.6. On the accuracy of the reference solution

In many earlier benchmark solutions, the accuracy achieved was close to 0.1% or better.
Some of our results are not as accurate, and as a consequence, it is legitimate to question
the use of the term ‘Reference Solution’. Earlier benchmark problems were mostly for steady
state problems, or involved only one primary length scale. Even today, phase change problems
coupled to convection are highly demanding in computational resources. As a result, there has
not been any reference solution published to date [14, 15, 17]. Earlier publications about the tin
or gallium melting problems mostly focused on global solution features, and a 10% agreement
between two distinct solutions for the same problem was often considered satisfactory (see for
example Reference [28]). In the present study, we provide the �rst thoroughly documented
data values for a phase change problem involving convection in the melt. Many of our results
are accurate to within 0.1% and some only to within 1%. Further improvements via higher
order schemes and=or adaptive mesh re�nement are to be considered.

6.7. Computational resources

The CPU requirements for some of the simulations are presented in Table XI. Some of the
simulations took months to complete. Parallelization is an option to consider for carrying out
such demanding computations.

7. CONCLUSION

The lack of a reference solution for phase change problems involving convection in the melt
is a current issue that needs to be resolved. In this work, we present a convergence study for
the problem of tin melting in a vertical cavity heated from the side. The mathematical model
selected for this benchmark problem is based on the enthalpy formulation. Grid re�nement
plots are provided for most physical quantities of interest, demonstrating a good level of con-
vergence. The physical processes involved in the tin melting problem are also documented.
The reference solution includes tables of values as well as various plots for the most important
features of interest. The accuracy achieved in this work is as good as 0.1% for many param-
eters, with some only accurate to within 0.96%. This work provides the research community
with a thoroughly documented reference solution that can be used as a starting point to verify
other codes and models and also for further investigations on the same problem.
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NOMENCLATURE

Letters

A porosity constant
cp speci�c heat
C porosity constant
fL liquid fraction
g gravity acceleration
h sensible enthalpy (cpT )
H cavity height
L latent heat of fusion
Nu Nusselt number (Qw=Qc)
P pressure
Pr Prandtl number (�=�)
q porosity constant
Qc wall heat �ux without convection
Qw wall heat �ux with convection
Ra Rayleigh num.: g�(Th − Tf )H 3=��
St Stefan number cp(Th − Tc)=L
t time
T temperature
u x-velocity component
v y-velocity component
V velocity vector
W cavity width
xint interface location
x; y Cartesian coordinates

Greek letters

� thermal di�usivity (�=�cp)
� coe�cient of thermal expansion
�H latent enthalpy content (fLL)
� numerical solidi�cation T range
�o outer iterations convergence tolerance
� thermal conductivity
� dynamic viscosity
� kinematic viscosity
� density
 streamfunction
! under-relaxation parameter

Subscripts

c cold wall or roll centre
e extrapolated
f melting or freezing
h hot wall
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int interface
L liquidus
max maximum over cavity
min minimum over cavity
ref reference value at Tf
S solidus
var variation during one time step

Superscripts

h energy equation
k outer iteration index
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